In my previous post, we discussed how neural networks predict and learn from the data. There are two processes responsible for this: the forward pass and backward pass, also known as backpropagation. You can learn more about it here:
This post will dive into how we can optimise this “learning” and “training” process to increase the performance of our model. The areas we will cover are computational improvements and hyperparameter tuning and how to implement it in PyTorch!
But, before all that good stuff, let’s quickly jog our memory about neural networks!
If you are enjoying this article, make sure to subscribe to my YouTube Channel!
Click on the link for video tutorials that teach you core data science concepts in a digestible manner!
Neural networks are large mathematical expressions that try to find the “right” function that can map a set of inputs to their corresponding outputs. An example of a neural network is depicted below:
Each hidden-layer neuron carries out the following computation: